ABSOLUTE PRESSURE SENSOR
WSEN-PADS
USER MANUAL

2511020213301

VERSION 1.1

APRIL 17, 2020
Revision history

<table>
<thead>
<tr>
<th>Manual version</th>
<th>Notes</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>• Initial release of the manual</td>
<td>April 2019</td>
</tr>
</tbody>
</table>
| 1.0 | • Updated section 10: Interrupt functionality
 • Updated section 12: Register description | June 2019 |
| 1.1 | • Updated flowchart in section 6.5
 • Added note to section 8.3
 • Updated section 10.2: Interrupt generation based on pressure threshold
 • Updated address of reserved registers and register type of REF_P_x in section 11: Register Map
 • Updated register name in section 12.6
 • Updated register address to 0x7C in section 12.28 | April 2020 |
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIC</td>
<td>Application Specific Integrated Circuit</td>
</tr>
<tr>
<td>BDU</td>
<td>Block Data Update</td>
</tr>
<tr>
<td>DRDY</td>
<td>Data ready</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic Discharge</td>
</tr>
<tr>
<td>FIFO</td>
<td>First-In First-Out</td>
</tr>
<tr>
<td>HBM</td>
<td>Human Body Model</td>
</tr>
<tr>
<td>I(^2)C</td>
<td>Inter Integrated Circuit</td>
</tr>
<tr>
<td>LGA</td>
<td>Land Grid Array</td>
</tr>
<tr>
<td>MEMS</td>
<td>Micro-Electro Mechanical System</td>
</tr>
<tr>
<td>MSB</td>
<td>Most Significant Bit</td>
</tr>
<tr>
<td>NVM</td>
<td>Non Volatile Memory</td>
</tr>
<tr>
<td>ODR</td>
<td>Output Data Rate</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bit</td>
</tr>
</tbody>
</table>
Contents

1 Introduction ... 7
1.1 Application ... 7
1.2 Key features .. 7
1.3 Ordering information .. 7
1.4 Block diagram ... 8
1.5 Operational functionality ... 8
 1.5.1 MEMS Cell .. 8
 1.5.2 ASIC ... 8
 1.5.3 Calibration .. 8
 1.5.4 Digital filtering ... 9
 1.5.5 FIFO memory ... 9
1.6 Filtering chain and data path ... 9

2 Sensor specifications ... 10
2.1 General information ... 10
2.2 Absolute maximum ratings .. 10
2.3 Pressure sensor specification ... 11
2.4 Temperature sensor specification 11
2.5 Electrical specifications ... 12

3 Pinning information .. 13
3.1 Pin configuration ... 13
3.2 Pin description .. 13

4 Digital interface .. 14
4.1 General characteristics .. 14
4.2 SDA and SCL logic levels .. 15
4.3 Communication phase .. 15
 4.3.1 Idle state .. 15
 4.3.2 START(S) and STOP(P) condition 15
 4.3.3 Data validity ... 16
 4.3.4 Byte format ... 16
 4.3.5 Acknowledge(ACK) and No-Acknowledge(NACK) 16
 4.3.6 Slave address for the sensor 17
 4.3.7 Read/Write operation ... 18
4.4 I²C timing parameters .. 20

5 Application circuit ... 21

6 Quick start guide .. 23
6.1 Power-up sequence .. 23
6.2 Communication with host controller 24
6.3 Reboot ... 24
6.4 Software reset .. 24
6.5 Sensor operation: single conversion mode 26
6.6 Sensor operation: continuous mode 27
6.7 Power-off sequence ... 28
7 Modes of operation
7.1 Power-down mode ... 30
7.2 Single conversion mode 31
7.3 Continuous mode ... 32
7.4 Additional configurations 33
 7.4.1 Low-power or low-noise configuration 33
 7.4.2 Enabling additional low-pass filter 34

8 Reading output data ... 35
8.1 Reading pressure values 35
8.2 Reading temperature values 36
8.3 Status register for reading the data 37

9 FIFO buffer .. 38
9.1 Bypass mode .. 40
9.2 FIFO mode ... 41
9.3 Continuous mode .. 42
9.4 Bypass-to-FIFO mode .. 43
9.5 Bypass-to-continuous mode 44
9.6 Continuous-to-FIFO mode 45
9.7 FIFO status monitoring and control 46
 9.7.1 User-defined FIFO threshold 47
 9.7.2 Reading data from FIFO buffer 47

10 Interrupt functionality .. 48
10.1 Interrupt generation on pressure data-ready 48
10.2 Interrupt generation based on pressure threshold 49
 10.2.1 Interrupt latching 52
10.3 FIFO status based interrupt events 53
10.4 Routing interrupt events to the \texttt{INT} pin 53

11 Register map .. 55

12 Register description ... 56
12.1 \texttt{INT_CFG} (0x0B) 56
12.2 \texttt{THR_P_L} (0x0C) 58
12.3 \texttt{THR_P_H} (0x0D) 58
12.4 \texttt{INTERFACE_CTRL} (0x0E) 59
12.5 \texttt{DEVICE_ID} (0x0F) 59
12.6 \texttt{CTRL_1} (0x10) 60
12.7 \texttt{CTRL_2} (0x11) 61
12.8 \texttt{CTRL_3} (0x12) 62
12.9 \texttt{FIFO_CTRL} (0x13) 63
12.10 \texttt{FIFO_WTM} (0x14) 64
12.11 \texttt{REF_P_L} (0x15) 64
12.12 \texttt{REF_P_H} (0x16) 64
12.13 \texttt{OPC_L} (0x18) 65
12.14 \texttt{OPC_H} (0x19) 65
12.15 \texttt{INT_SOURCE} (0x24) 66
12.16 \texttt{FIFO_STATUS_1} (0x25) 66

Absolute pressure sensor, Part Nr. 2511020213301
User manual version 1.1 © April 2020
www.we-online.com/sensors
12.17 FIFO_STATUS_2 (0x26) ... 67
12.18 STATUS (0x27) .. 67
12.19 DATA_P_XL (0x28) .. 68
12.20 DATA_P_L (0x29) ... 68
12.21 DATA_P_H (0x2A) ... 69
12.22 DATA_T_L (0x2B) ... 69
12.23 DATA_T_H (0x2C) .. 69
12.24 FIFO_DATA_P_XL (0x78) ... 70
12.25 FIFO_DATA_P_L (0x79) ... 70
12.26 FIFO_DATA_P_H (0x7A) .. 70
12.27 FIFO_DATA_T_L (0x7B) ... 71
12.28 FIFO_DATA_T_H (0x7C) ... 71

13 Physical dimensions ... 72
 13.1 Sensor drawing ... 72
 13.2 Footprint .. 73

14 Manufacturing information ... 74
 14.1 Moisture sensitivity level ... 74
 14.2 Soldering .. 74
 14.2.1 Reflow soldering ... 74
 14.2.2 Cleaning and washing ... 76
 14.2.3 Potting and coating .. 76
 14.2.4 Storage conditions ... 76
 14.2.5 Handling ... 76

15 Important notes .. 78
 15.1 General customer responsibility ... 78
 15.2 Customer responsibility related to specific, in particular safety-relevant applica-
 tions ... 78
 15.3 Best care and attention .. 78
 15.4 Customer support for product specifications .. 78
 15.5 Product improvements .. 79
 15.6 Product life cycle .. 79
 15.7 Property rights .. 79
 15.8 General terms and conditions .. 79

16 Legal notice .. 80
 16.1 Exclusion of liability ... 80
 16.2 Suitability in customer applications .. 80
 16.3 Usage restriction ... 80

17 License terms for Würth Elektronik eiSos GmbH & Co. KG sensor product
 software and source code .. 82
 17.1 Limited license .. 82
 17.2 Usage and obligations .. 82
 17.3 Ownership .. 83
 17.4 Disclaimer of warranty ... 83
 17.5 Limitation of liability ... 83
 17.6 Applicable law and jurisdiction .. 83
1 Introduction

This device is a MEMS based piezo-resistive absolute pressure sensor. The sensor comprises of a pressure sensing cell and an analog and digital signal processing unit. The integrated ASIC with digital I²C interface provides a digital signal to the host controller. The sensor has an embedded temperature sensor. A 128 level embedded FIFO buffer is available to store the pressure and temperature data. The sensor comes in fully molded holed land grid array package (LGA) having a form factor of 2.0 x 2.0 x 0.8 mm.

1.1 Application

- Altimeters and barometers
- Weather stations
- GPS navigation enhancement
- Indoor navigation
- White goods
- Wearable devices

1.2 Key features

- Absolute pressure range: 26 to 126 kPa
- Output data rate: 1 Hz to 200 Hz
- Integrated temperature sensor
- Pressure data: 24-bits and temperature data: 16-bits
- Low current consumption: 4 µA
- Digital interface: I²C
- Embedded FIFO buffer: 128 levels
- Interrupt pin functionality: data-ready, pressure threshold

1.3 Ordering information

<table>
<thead>
<tr>
<th>WE order code</th>
<th>Temperature range</th>
<th>Dimensions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2511020213301</td>
<td>-40°C to +85°C</td>
<td>2.0 x 2.0 x 0.8 mm</td>
<td>Tape & reel packaging</td>
</tr>
</tbody>
</table>

Table 1: Ordering information
1.4 Block diagram

![Block diagram](image)

Figure 1: Block diagram

1.5 Operational functionality

1.5.1 MEMS Cell

The MEMS cell is the primary pressure sensing element. It contains piezo-resistors embedded on a suspended silicon membrane. The piezo-resistors are connected in a Wheatstone bridge configuration. When pressure is applied, the membrane is deflected and the bridge resistance changes. This change leads to a change of the Wheatstone output voltage proportional to the applied pressure. This analog signal is fed to the ASIC.

1.5.2 ASIC

The ASIC comprises of low-noise amplifier, analog-to-digital converter and other signal conditioning blocks that converts an uncompensated analog voltage equivalent to a 24-bit digital pressure value.

The ASIC embeds a high-resolution temperature sensor which is used for internal compensation of the pressure signal. The temperature information can also be read as a 16-bit digital value.

1.5.3 Calibration

The sensor is factory calibrated for both pressure and temperature measurements. The trimming parameters are stored on-chip in the non volatile memory (NVM). Every-time the sensor is powered on, these trimming parameters are copied from the NVM to the registers. In normal use, no further calibration is required from the user.
1.5.4 Digital filtering

The sensor has on-chip signal conditioning and embeds two digital low pass filters. The first filter LPF1 is applied to both pressure and temperature data. The second filter LPF2 can be optionally applied only to the pressure data. User can turn on or off this filter, depending on his requirements.

1.5.5 FIFO memory

The sensor has embedded FIFO buffer that can store up to 128 levels of pressure and temperature data. This can save host controller power, since the controller doesn’t have to poll for data continuously.

1.6 Filtering chain and data path

Figure 2 shows detailed information about the functionality of the sensor. The sensor can be operated in various operating modes and filter setting which determines the pressure and temperature data path.

Figure 2: Filtering chain and data path
2 Sensor specifications

2.1 General information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>-40 up to +85°C</td>
</tr>
<tr>
<td>Storage conditions</td>
<td>< 40 °C; < 90% RH</td>
</tr>
<tr>
<td>Communication interface</td>
<td>I²C</td>
</tr>
<tr>
<td>Moisture sensitivity level (MSL)</td>
<td>3</td>
</tr>
<tr>
<td>Electrostatic discharge protection (HBM)</td>
<td>2.5 kV</td>
</tr>
</tbody>
</table>

Table 2: General information

2.2 Absolute maximum ratings

Absolute maximum ratings are the limits, the device can be exposed to without causing permanent damage. Exposure to absolute maximum conditions for extended periods may affect device reliability.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage VDD pin</td>
<td>V_{DD_MAX}</td>
<td>-0.3 to 4.8</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage VDD_IO pin</td>
<td>V_{DD_IO_MAX}</td>
<td>-0.3 to 4.8</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage SDA, SCL, CS & SAO pins</td>
<td>V_{IN_MAX}</td>
<td>-0.3 to V_{DD} + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>Overpressure</td>
<td>P_{OVER}</td>
<td>2</td>
<td>Mpa</td>
</tr>
</tbody>
</table>

Table 3: Absolute maximum ratings

STOP Supply voltage on any pin should never exceed 4.8 V.

The device is susceptible to be damaged by electrostatic discharge (ESD). Always use proper ESD precautions when handling. Improper handling of the device can cause performance degradation or permanent damage.
2.3 Pressure sensor specification

Unless otherwise stated, all the specified values were measured under the following conditions: T=25°C, VDD=3.3 V.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range</td>
<td>P_RANGE</td>
<td></td>
<td>26</td>
<td>126</td>
</tr>
<tr>
<td>Absolute accuracy¹</td>
<td>P_ACC_ABS</td>
<td>T= -20 to 80°C</td>
<td>±100</td>
<td>Pa</td>
</tr>
<tr>
<td>Relative accuracy²</td>
<td>P_ACC_REL</td>
<td>P= 80 to 110 kPa T= 25°C</td>
<td>±2.5</td>
<td>Pa</td>
</tr>
<tr>
<td>Resolution</td>
<td>RES_P</td>
<td></td>
<td>24</td>
<td>bit</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>SEN_P</td>
<td></td>
<td>1/40960</td>
<td>kPa/digit</td>
</tr>
<tr>
<td>Output data rate</td>
<td>ODR</td>
<td></td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>Noise (RMS)³</td>
<td>P_NOISE</td>
<td>Low pass filter enabled</td>
<td>0.75</td>
<td>Pa RMS</td>
</tr>
<tr>
<td>Offset change over temp</td>
<td>P_TCO</td>
<td>P= 66 to 116 kPa T= -20 to 65°C</td>
<td>±65</td>
<td>Pa/°C</td>
</tr>
<tr>
<td>Long term drift</td>
<td>P_DRIFT</td>
<td></td>
<td>±33</td>
<td>Pa/Year</td>
</tr>
</tbody>
</table>

Table 4: Pressure sensor specifications

1. Absolute accuracy includes the soldering drift effects.
2. Typical value is defined based on characterization data with 2kPa interval.
3. Pressure noise RMS is measured in a controlled environment.

2.4 Temperature sensor specification

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range</td>
<td>T_RANGE</td>
<td></td>
<td>-40</td>
<td>+85</td>
</tr>
<tr>
<td>Absolute accuracy</td>
<td>T_ACC_ABS</td>
<td>T= 0 to 80°C</td>
<td>±1.5</td>
<td>°C</td>
</tr>
<tr>
<td>Resolution</td>
<td>RES_T</td>
<td></td>
<td>16</td>
<td>bit</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>SEN_T</td>
<td></td>
<td>0.01</td>
<td>°C/digit</td>
</tr>
</tbody>
</table>

Table 5: Temperature sensor specifications
2.5 Electrical specifications

Unless otherwise stated, all the specified values were measured under the following conditions: T=25°C, V_DD=3.3V.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating supply voltage</td>
<td>V_DD</td>
<td></td>
<td>1.7</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Supply voltage for I/O pins</td>
<td>V_DD_IO</td>
<td></td>
<td>1.7</td>
<td>V_DD+0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Current consumption in low power mode</td>
<td>I_DD_LP</td>
<td>ODR= 1Hz</td>
<td>4</td>
<td>µA</td>
</tr>
<tr>
<td>Current consumption in low noise mode</td>
<td>I_DD_LN</td>
<td>ODR= 1Hz</td>
<td>12</td>
<td>µA</td>
</tr>
<tr>
<td>Current consumption in power down mode</td>
<td>I_DD_PD</td>
<td></td>
<td>0.9</td>
<td>µA</td>
</tr>
<tr>
<td>Digital input voltage - high-level</td>
<td>V_IH</td>
<td></td>
<td>0.8*V_DD_IO</td>
<td>V</td>
</tr>
<tr>
<td>Digital input voltage - low-level</td>
<td>V_IL</td>
<td></td>
<td>0.2*V_DD_IO</td>
<td>V</td>
</tr>
<tr>
<td>Digital output voltage - high-level</td>
<td>V_OH</td>
<td></td>
<td>V_DD_IO-0.2</td>
<td>V</td>
</tr>
<tr>
<td>Digital output voltage - low-level</td>
<td>V_IL</td>
<td></td>
<td>0.2</td>
<td>V</td>
</tr>
</tbody>
</table>

Table 6: Electrical specifications
3 Pinning information

3.1 Pin configuration

![Pin configuration diagram](image)

Figure 3: Pin specifications (top view)

3.2 Pin description

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Name</th>
<th>Function</th>
<th>I/O</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD_IO</td>
<td>Positive supply voltage for I/O pins</td>
<td>Supply</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SCL</td>
<td>I²C serial clock</td>
<td>Input</td>
<td>Internal pull-up disconnected by default</td>
</tr>
<tr>
<td>3</td>
<td>RSVD</td>
<td>Reserved</td>
<td>Input</td>
<td>Connect to ground</td>
</tr>
<tr>
<td>4</td>
<td>SDA</td>
<td>I²C serial data</td>
<td>Input/Output</td>
<td>Internal pull-up disconnected by default</td>
</tr>
<tr>
<td>5</td>
<td>SAO</td>
<td>I²C device address selection</td>
<td>Input</td>
<td>High: device address LSB is 1 Low: device address LSB is 0</td>
</tr>
<tr>
<td>6</td>
<td>CS</td>
<td>I²C enable/disable</td>
<td>Input</td>
<td>High: I²C enable</td>
</tr>
<tr>
<td>7</td>
<td>INT</td>
<td>Interrupt</td>
<td>Output</td>
<td>Do not connect if not used</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Negative supply voltage</td>
<td>Supply</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>Negative supply voltage</td>
<td>Supply</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>VDD</td>
<td>Positive supply voltage</td>
<td>Supply</td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Pin description
4 Digital interface

The sensor supports standard I²C (Inter-IC) bus protocol. Further information about the I²C interface can be found at https://www.nxp.com/docs/en/user-guide/UM10204.pdf. I²C is a serial 8-bit protocol with two-wire interface that supports communication between different ICs, for example, between microcontrollers and other peripheral devices.

4.1 General characteristics

A serial data line (SDA) and a serial clock line (SCL) are required for the communication between the devices connected via I²C bus. Both SDA and SCL lines are bidirectional. The output stages of devices connected to the bus must have an open-drain or open-collector. Hence, the SDA and SCL lines are connected to a positive supply voltage via pull-up resistors. In I²C protocol, the communication is realized through master-slave principle. A master device generates the clock pulse, a start command and a stop command for the data transfer. Each connected device on the bus is addressable via a unique address. Master and slave can act as a transmitter or a receiver depending upon whether the data needs to be sent or received.

This sensor behaves like a slave device on the I²C bus

Figure 4: Master-slave concept
4.2 SDA and SCL logic levels

The positive supply voltage to which SDA and SCL lines are pulled up (through pull-up resistors), in turn determines the high level input for the slave devices. The sensor has separate supply voltage V_{DD_IO} for the SDA and SCL lines. The logic high ‘1’ and logic low ‘0’ levels for the SDA and SCL lines then depend on the V_{DD_IO}. Input reference levels for this sensor are set as $0.8 \times V_{DD_IO}$ (for logic high) and $0.2 \times V_{DD_IO}$ (for logic low). Explained in the figure 5.

![Figure 5: SDA and SCL logic levels](image)

4.3 Communication phase

4.3.1 Idle state

During the idle state, the bus is free and both SDA and SCL lines are in logic high ‘1’ state.

4.3.2 START(S) and STOP(P) condition

Data transfer on the bus starts with a START command, which is generated by the master. A start condition is defined as a high-to-low transition on the SDA line while the SCL line is held high. The bus is considered busy after the start condition.

Data transfer on the bus is terminated with a STOP command, which is also generated by the master. A low-to-high transition on the SDA line, while the SCL line being high is defined as a STOP condition. After the stop condition, the bus is again considered free and is in idle state. Figure 6 shows the I²C bus START and STOP conditions.

Master can also send a REPEATED START (SR) command instead of STOP command. REPEATED START condition is the same as the START condition.
4.3.3 Data validity

After the start condition, one data bit is transferred with each clock pulse. The transmitted data is only valid when the \textit{SDA} line data is stable (high or low) during the high period of the clock pulse. High or low state of the data line can only change when clock pulse is in low state.

![Figure 6: Data validity, START and STOP condition](image)

4.3.4 Byte format

Data transmission on the \textit{SDA} line is always done in bytes, with each byte being 8-bits long. Data is transferred with the most significant bit (MSB) followed by other bits. If the slave cannot receive or transmit another complete byte of data, it can force the master into a wait state by holding \textit{SCL} low. Data transfer continues when the slave is ready which is indicated by releasing the \textit{SCL} line.

4.3.5 Acknowledge(ACK) and No-Acknowledge(NACK)

Each byte sent on the data line must be followed by an Acknowledge bit. The receiver (master or slave) generates an Acknowledge signal to indicate that the data byte was received successfully and another data byte could be sent.

After one byte is transmitted, the master generates an additional Acknowledge clock pulse to continue the data transfer. The transmitter releases the \textit{SDA} line during this clock pulse so that the receiver can pull the \textit{SDA} line to low state in such a way that the \textit{SDA} line remains stable low during the entire high period of the clock pulse. This is considered as an Acknowledge signal.

In case the receiver does not want to receive any further byte, it does not pull down the \textit{SDA} line and it remains in stable high state during the entire clock pulse. This is considered as a No-Acknowledge signal and the master can generate either a stop condition to terminate the data transfer or a repeated start condition to initiate a new data transfer.
4.3.6 Slave address for the sensor

The slave address is transmitted after the start condition. Each device on the I²C bus has a unique address. Master selects the slave by sending corresponding address after the start condition. A slave address is 7 bits long followed by a Read/Write bit.

The 7-bit slave address for this sensor is 101110xb. LSB of the 7-bit slave address can be modified with the SAO pin. When SAO is connected to positive supply voltage, the LSB is '1', making 7-bit slave address 1011101b (0x5D). If SAO is connected to ground, the LSB is '0', making 7-bit address 1011100b (0x5C).

The R/W bit determines the data direction. A '0' indicates a write operation (transmission from master to slave) and a '1' indicates a read operation (data request from slave).

<table>
<thead>
<tr>
<th>Slave address[6:1]</th>
<th>Slave address[0]</th>
<th>7-bit slave address</th>
<th>R/W</th>
<th>Slave address + R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>101110</td>
<td>SAO=0</td>
<td>1011100b (0x5C)</td>
<td>0</td>
<td>10111000b (0xB8)</td>
</tr>
<tr>
<td>101110</td>
<td>SAO=1</td>
<td>1011101b (0x5D)</td>
<td>0</td>
<td>10111010b (0xBA)</td>
</tr>
<tr>
<td>101110</td>
<td>SAO=0</td>
<td>10111001b (0xB9)</td>
<td>1</td>
<td>10111011b (0xBB)</td>
</tr>
</tbody>
</table>

Table 8: Slave address and Read/Write commands
4.3.7 Read/Write operation

Once the slave-address and data direction bit is sent, the slave acknowledges the master. The next byte sent by the master must be a register-address of the sensor. This indicates the address of the register where data needs to be written to or read from.

![Figure 8: Complete data transfer](image)

After receiving the register address, the slave sends an Acknowledgement (ACK). If the master is still writing to the slave (R/W bit = 0), it will transmit the data to slave in the same direction. If the master wants to read from the addressed register (R/W bit = 1), a repeated start (SR) condition must be sent to the slave. Master acknowledges the slave after receiving each data byte. If the master no longer wants to receive further data from the slave, it would send No-Acknowledge (NACK). Afterwards, Master can send a STOP condition to terminate the data transfer. Figure 9 shows the writing and reading procedures between the master and the slave device (sensor).

7-bit slave address of this device is 101110xb. LSB of the 7-bit slave address depends on the SAO pin.
a) I^2C write: Master writing data to slave

<table>
<thead>
<tr>
<th>S</th>
<th>Slave address + Write</th>
<th>ACK</th>
<th>Register address</th>
<th>ACK</th>
<th>Data</th>
<th>ACK</th>
<th>P</th>
</tr>
</thead>
</table>

b) I^2C read: Master reading multiple data bytes from slave

<table>
<thead>
<tr>
<th>S</th>
<th>Slave address + Write</th>
<th>ACK</th>
<th>Register address</th>
<th>ACK</th>
<th>SR</th>
<th>Slave address + Read</th>
<th>ACK</th>
<th>Data</th>
<th>ACK</th>
<th>Data</th>
<th>NACK</th>
<th>P</th>
</tr>
</thead>
</table>

- Transmission from master to slave
- Transmission from slave to master
- S: START condition
- P: STOP condition
- ACK: Acknowledge
- NACK: No acknowledge
- SR: Repeated start condition

Figure 9: Write and read operations with the device
4.4 \(\text{I}^2 \text{C} \) timing parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Standard mode</th>
<th>Fast mode</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>(SCL) clock frequency</td>
<td>(f_{SCL})</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>LOW period for (SCL) clock</td>
<td>(t_{LOW, SCL})</td>
<td>4.7</td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>HIGH period for (SCL) clock</td>
<td>(t_{HIGH, SCL})</td>
<td>4.0</td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>Hold time for START condition</td>
<td>(t_{HD, S})</td>
<td>4</td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>Setup time for (repeated) START condition</td>
<td>(f_{SCL})</td>
<td>4.7</td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>(SDA) setup time</td>
<td>(t_{SU, SDA})</td>
<td>250</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>(SDA) data hold time</td>
<td>(t_{HD, SDA})</td>
<td>0</td>
<td>3.45</td>
<td>0</td>
</tr>
<tr>
<td>Setup time for STOP condition</td>
<td>(t_{SU, P})</td>
<td>4</td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>Bus free time between STOP and START condition</td>
<td>(t_{BUF})</td>
<td>4.7</td>
<td></td>
<td>1.3</td>
</tr>
</tbody>
</table>

Table 9: \(\text{I}^2 \text{C} \) timing parameters
5 Application circuit

The sensor has two separate supply pins: \(VDD \) and \(VDD_IO \). \(VDD \) pin is the central supply pin for the MEMS cell and internal circuits. \(VDD_IO \) provides the supply to the digital interface.

\[VDD_IO \text{ voltage level must be equal to or lower than } V_{DD} + 0.1 \text{ V.} \]

In order to prevent ripple from the power supply, a decoupling capacitor of 10 nF must be placed as close to the \(VDD \) pad of the sensor as possible. An optional decoupling capacitor (4.7 \(\mu \)F) could be placed as shown in the figure 10. If \(VDD_IO \) is not connected to the \(VDD \) line, a separate decoupling capacitor of 10nF should be added on the \(VDD_IO \) line.

Figure 10 shows a typical application circuit for \(I^2C \) communication. For proper \(I^2C \) functionality, the \(CS \) pin must be connected to \(VDD \). Least significant bit of the 7-bit slave address
can be modified based on the status of the SAO pin. In order to optimize the power consumption, it is recommended to connect SAO pin to VDD (SAO = 1) if only one sensor is used on the I^2C line. This sets the 7 bit slave address as 0x5D (1011101b). SCL and SDA must be connected to VDD_IO through the pull-up resistors. Proper value of the pull-up resistors must be chosen depending on the I^2C bus speed and load.

Pins SDA and SCL have internal pull up resistors. By default they are disabled and can be enabled through bits SDA_PU_EN and SAO_PU_EN in InTERFACE_CTRL register (0x0E). Value of the internal pull up varies between 30k\(\Omega\) 50k\(\Omega\), depending on VDD_IO.

Sensor communication with the master controller remains active even if VDD is disconnected while VDD_IO is maintained. However, in this situation, the internal measurement cycle is turned off.
6 Quick start guide

6.1 Power-up sequence

The sensor is powered up when supply voltage is applied to V_{DD} and V_{DD_IO} pins. During the power up sequence, it is recommended to keep the I^2C interface pins in the high impedance state from the host controller side.

During the power up sequence of the sensor, the sensor performs a boot process. During this process, trimming parameters and calibration coefficients are loaded to the internal registers from the embedded non-volatile memory. The booting process lasts for a maximum of 4.5 milliseconds. During this period, the internal registers are not accessible to read or write the data. However, the status of the boot procedure can be checked by reading the BOOT bit in the INT_SOURCE register (0x24). This bit is set to ‘1’ during the boot procedure and automatically goes back to ‘0’ once it has ended. At the end of the power-up sequence the sensor automatically enters into power-down mode and is ready for data measurements.

![Power-up sequence diagram](image)

Figure 11: Power-up sequence
6.2 Communication with host controller

Communication with the host controller via I²C interface can be checked by reading the DEVICE_ID register (0x0F). Device ID for this sensor is 0xB3.

![Communication check with host controller](image)

6.3 Reboot

Reboot procedure can be also performed by the user in case the trimming parameters are somehow modified during operations. The Reboot procedure restores the correct values and resets the offset calibration registers OPC_L (0x18) and OPC_H (0x19) to '0'.

When the BOOT bit in the CTRL_2 register (0x11) is set to '1', the trimming parameters are copied to the corresponding internal registers and are used to calibrate the device. At the end of the reboot process the BOOT bit is self cleared to '0'.

Status of the reboot procedure can be checked by the BOOT_ON bit as mentioned in the section 6.1

6.4 Software reset

To set the internal registers to the default values, software reset can be performed. It is done by setting the SWRESET bit in the CTRL_2 register (0x11) to '1'. Following registers are reset to their default values during the software reset.

- INTERRUPT_CFG (0x0B)
- THR_P_L (0x0C)
• THR_P_H (0x0C)
• INTERFACE_CTRL (0x0E)
• CTRL_1 (0x10)
• CTRL_2 (0x11)
• CTRL_3 (0x12)
• FIFO_CTRL (0x13)
• FIFO_WTM (0x14)
• INT_SOURCE (0x24)
• FIFO_STATUS1 (0x25)
• FIFO_STATUS1 (0x26)
• STATUS (0x27)

The software reset procedure lasts for a maximum of 50 µs. At the end of the software reset, the SWRESET bit in CTRL_2 register (0x11) is automatically set back to '0'.

The reboot and software reset procedure must not be executed simultaneously. Both processes can be executed serially as shown in Figure 13.

![Diagram showing the reboot and software reset sequence]

Figure 13: Reboot and software reset sequence

Do not set BOOT and SWRESET bits to '1' at the same time.
6.5 Sensor operation: single conversion mode

Flow chart shows sensor operation in the single conversion mode.

![Flow chart diagram]

Figure 14: Sensor operation: single-conversion mode
6.6 Sensor operation: continuous mode

Flow chart shows sensor operation in continuous mode with 50Hz ODR and low-noise configuration enabled.

Power-down mode

Set bit LOW_NOISE_ENABLE='1' in CTRL_2 register (0x11)

Enable Low-noise configuration
(Automatic increment register address enabled by default)

Set bits EN_LPFP='1', LPFP_CFG='1' and BDU='1' in CTRL_1 register (0x10)

Additional low pass filter enabled & BW=ODR/20; Enable block data update

Set bits ODR[2:0]= '100' in CTRL_1 register (0x10)

Set sensor in continuous mode with ODR = 50Hz;

Read pressure and temperature data registers (0x28 – 0x2C)

Get pressure and temperature values in SI unit

Wait t=1/ODR

Combine corresponding data registers and multiply with the sensitivity parameter; SENp= 1/40960; SENr=0.01

Figure 15: Sensor operation: continuous mode
6.7 Power-off sequence

VDD rise/fall time for the sensor varies between 10 µs and 100 ms. For proper device power off, it is recommended to drive the VDD pin to GND or less than 0.2 V and keep it stable at this level for at least 10 ms.

This procedure is also necessary to guarantee the next power-on and boot procedure to be successful.
7 Modes of operation

The sensor can be configured to be used in the following 3 different modes.

1. Power-down mode
2. Single conversion mode
3. Continuous mode

Additionally, the device can be operated in either low-power or low-noise configuration. Transition to/from one of the operating modes and configurations can be executed by writing to specific registers.

Figure 16: Operating modes
7.1 Power-down mode

The power-down mode can be configured by setting the ODR[2:0] bits of `CTRL_1` register (0x10) to '000'.

In power-down mode the digital chain that samples the pressure and temperature values is turned off. No new measurement is performed during this mode. Hence, the data registers containing pressure and temperature values are not updated. The data registers contain the last sampled pressure and temperature data before going into power-down mode. Current consumption is at the minimum during this mode.

However, serial communication with the host controller via I²C bus is still possible. This allows the user to configure the device by accessing the configuration/control registers. Data of the control registers remains unaffected when the sensor is configured to power-down mode from another mode.

Sensor is in power-down mode by default after the power-up sequence.
7.2 Single conversion mode

In this mode single measurement of pressure and temperature is performed according to the request of the host controller. This mode can be activated only when the sensor is in the power-down mode. When ONE_SHOT bit of CTRL_2 register (0x11) is set to '1', the digital chain is turned on, data conversion starts and a single measurement of pressure and temperature is acquired. This measurement data is written in the respective pressure and temperature data registers. Afterwards, the digital chain is turned off again and the sensor enters the power-down mode. The ONE_SHOT bit of CTRL_2 register (0x11) automatically returns to '0' (default value). The data registers are not updated until another data acquisition is requested by the host controller. This mode is useful when the application demands reduced power consumption.

During this mode the output data rate (ODR) of new measurement depends on the new measurement request from the host controller (frequency at which the ONE_SHOT bit is set to '1').

![Diagram showing single conversion mode]

Figure 17: Single conversion mode

Figure 10 shows typical data conversion time in low-power and low-noise configuration.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Conversion time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-power</td>
<td>4.7</td>
</tr>
<tr>
<td>Low-noise</td>
<td>13.2</td>
</tr>
</tbody>
</table>

Table 10: Data conversion time
7.3 Continuous mode

The sensor is configured in the continuous mode when the ODR[2:0] bits of CTR_1 register (0x10) are set to a value other than ‘000’. The continuous mode constantly samples new pressure and temperature measurements and writes the data to the corresponding data registers. The measurement rate is defined by the user selectable output data rate (ODR) which can be set by ODR[2:0] bits of CTRL_1 register. Selectable ODR and corresponding register settings are shown in the table 11.

![Diagram showing continuous mode](image)

<table>
<thead>
<tr>
<th>ODR[2:0]</th>
<th>Output data rate [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Power-down mode / One-shot mode</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>10</td>
</tr>
<tr>
<td>011</td>
<td>25</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>101</td>
<td>75</td>
</tr>
<tr>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>111</td>
<td>200</td>
</tr>
</tbody>
</table>

Table 11: Output data rate selection
7.4 Additional configurations

During continuous mode and single conversion mode, additional configurations can be selected. These include enabling the additional low pass filter; selecting either low-power or low-noise configuration.

7.4.1 Low-power or low-noise configuration

In the low-power configuration, the device is configured to minimize the current consumption. In the low-noise configuration, the device is configured to reduce the noise. During the continuous mode and single conversion mode, either one of these configurations can be selected as shown in Table 12. By default the sensor operates in the low-power configuration.

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
<th>Bit</th>
<th>Bit value</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x11</td>
<td>CTRL_2</td>
<td>LOW_NOISE_EN</td>
<td>0</td>
<td>Low-power (default)</td>
</tr>
<tr>
<td>0x11</td>
<td>CTRL_2</td>
<td>LOW_NOISE_EN</td>
<td>1</td>
<td>Low-noise</td>
</tr>
</tbody>
</table>

Table 12: Low-power/low-noise configuration

To ensure the proper behaviour of the device, LOW_NOISE_EN bit must changed only when it is in the power-down mode.

Table 13 shows typical conversion time and maximum allowable ODR in each operating mode.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Typical data conversion time [ms]</th>
<th>Maximum ODR [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Single conversion mode</td>
</tr>
<tr>
<td>Low-power</td>
<td>4.7</td>
<td>200</td>
</tr>
<tr>
<td>Low-noise</td>
<td>13.2</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 13: Typical conversion time and maximum ODR

Low-noise configuration is not available at ODR 100 Hz or 200Hz. If ODR is set to 100Hz or 200Hz, LOW_NOISE_EN bit must be set to ‘0’.
7.4.2 Enabling additional low-pass filter

The sensor embeds two digital low-pass filters. First low-pass filter LPF1 is always applied to the pressure and temperature data. The second low-pass filter LPF2 can be optionally enabled and applied to the pressure data. This configuration is available for both continuous mode and single conversion mode.

The second low-pass filter LPF2 can be enabled by setting the EN_LPFP bit in the CTRL_1 register (0x10) to '1'. Further, overall device bandwidth can also be configured by changing LPFP_CFG bit of the CTRL_1 (0x10) register. LPF2 is applied only to the pressure data.

<table>
<thead>
<tr>
<th>EN_LPFP</th>
<th>LPFP_CFG</th>
<th>LPF2 status</th>
<th>Device Bandwidth</th>
<th>Samples to be discarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x</td>
<td>Disabled/reset filter</td>
<td>ODR/2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Enabled</td>
<td>ODR/9</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Enabled</td>
<td>ODR/20</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 14: Additional low-pass filter setting

When EN_LPFP bit in the CTRL_1 (0x10) is changed from '1' to '0', the filter is reset. The filter is also reset when the ODR or device bandwidth is changed. Table 14 indicates the number of samples to be discarded when the filter is enabled or reset. The output data is not considered meaningful before the filter reaches the settling condition.
8 Reading output data

Once the device is configured in one of the operating modes, pressure and temperature values are sampled and stored in the respective data registers, available for the user to read.

It is recommended to read the data registers starting from the lower address to the higher address.

8.1 Reading pressure values

Pressure values are stored in the three data registers: \(\text{DATA}_P_XL \), \(\text{DATA}_P_L \) and \(\text{DATA}_P_H \). Each register contains 8-bits data. The complete pressure data is represented as a 24-bit signed 2's complement word. This can be obtained by concatenating the three 8-bit pressure data registers: \(\text{DATA}_P_H \), \(\text{DATA}_P_L \) & \(\text{DATA}_P_XL \), with \(\text{DATA}_P_H \) being most significant byte and \(\text{DATA}_P_XL \) being least significant byte.

After calculating the 24-bit digital pressure value, it must be multiplied with the sensitivity parameter, \(\text{SEN}_P \) (see table 4) in order to obtain the corresponding pressure in SI unit (Pa).

Step 1: Reading raw data from the three pressure data registers

1. \(\text{DATA}_P_XL \) (0x28)
2. \(\text{DATA}_P_L \) (0x29)
3. \(\text{DATA}_P_H \) (0x2A)

Step 2: Concatenating pressure data registers to obtain complete 24-bit pressure value

\[
P_{24\text{bit}} = \text{DATA}_P_H \& \text{DATA}_P_L \& \text{DATA}_P_XL
\]

Step 3: Obtaining pressure value in SI unit (Pa) by multiplying with sensitivity parameter

\[
\text{Pressure [Pa]} = P_{24\text{bit} \ [\text{digit}]} \times \frac{1}{40960} \ [\text{Pa/digit}]
\]

Example:

If values obtained from pressure data registers are:

\[
\begin{align*}
\text{DATA}_P_XL &= 0x00 \\
\text{DATA}_P_L &= 0x54 \\
\text{DATA}_P_H &= 0x3F
\end{align*}
\]

Concatenating these 3 registers (0x3F5400) to obtain 24-bit signed decimal value and multiplying with the sensitivity parameter

\[
\begin{align*}
P_{24\text{bit} \ [\text{digit}]} &= 4150272 \ [\text{digit}] \\
P[\text{kPa}] &= 4150272 \ [\text{digit}] \times \frac{1}{40960} \ [\text{kPa/digit}] = 101.325 \text{ kPa}
\end{align*}
\]
8.2 Reading temperature values

Temperature values are stored in the two data registers: DATA_T_L and DATA_P_H. Each register contains 8-bits data. The complete temperature data is a 16-bit signed 2’s complement word. This can be obtained by concatenating the two 8-bit temperature data registers: DATA_T_H & DATA_P_L, with DATA_T_H being most significant byte and DATA_T_L being least significant byte.

After calculating the 16-bit digital temperature value, it must be multiplied with the sensitivity parameter, SEN_T (see table 5) in order to obtain the corresponding temperature in SI unit (°C).

Step 1: Reading raw data from the two temperature data registers

1. DATA_T_L (0x2B)
2. DATA_T_H (0x2C)

Step 2: Concatenating the temperature data registers to obtain complete 16-bit temperature value

\[T_{16\text{bit}} = DATA_T_H \& DATA_T_L \]

Step 3: Obtaining temperature value in SI unit [°C] by multiplying with sensitivity parameter

\[\text{Temperature [°C]} = T_{16\text{bit}} \text{ [digit]} \times 0.01 \text{ [°C/digit]} \]

Example:

If values obtained from temperature data registers are:

\[DATA_T_L = 0x42 \]
\[DATA_T_H = 0x0E \]

Concatenating these 2 registers (0x0E42) to obtain 16-bit signed decimal value and multiplying with sensitivity parameter

\[T_{16\text{bit}} \text{ [digit]} = 3650 \text{ [digit]} \]
\[T[°C] = 3650 \text{ [digit]} \times 0.01 \text{ [°C/digit]} = 36.50 \text{ °C} \]
8.3 Status register for reading the data

The sensor has a STATUS register (0x27) that can be used to check when a new set of pressure or temperature data is available in the corresponding data register.

P_DA bit is set to ‘1’ whenever a new sample is available in the pressure data registers. P_DA bit is self cleared and set back to ‘0’ when the corresponding pressure data (most significant byte, DATA_P_H) has been read.

Same way, T_DA bit is set to ‘1’ whenever a new set of data is available in the temperature data registers. T_DA bit is self cleared and set back to ‘0’ when the corresponding temperature data (Most significant byte, DATA_T_H) has been read.

Bits P_OR and T_OR of the STATUS register (0x27) are overrun flags for pressure and temperature data respectively. Whenever a previous pressure or temperature sample in the data register is overwritten without being read by the user, P_OR and T_OR bits are set to ‘1’, indicating that previous value has been lost. P_OR and T_OR bit will be set to ‘1’ in case a new pressure or temperature data is measured while the corresponding x_DA bit is still ‘1’. They are automatically set to ‘0’ when all data from the corresponding data registers have been read and no new measurement is generated in the meantime.

Since, pressure and temperature data are synchronously generated, P_DA and T_DA synchronously rises to ‘1’ (unless one of the bit is already one). However, they would not synchronously reset to ‘0’ as it depends on when the corresponding data is read.

Reading the data registers (pressure and temperature) before 1/ODR time period allows acquisition of all data and resetting P_DA and T_DA before the overrun flags are set.

If the sensor is configured in the single conversion mode, the STATUS register will not be updated after the first measurement because the sensor goes to power down mode after the first acquisition.
9 FIFO buffer

The sensor has an embedded first-in, first-out (FIFO) buffer that can store up to 128 sets of pressure and temperature data. Each data set consists of 5 bytes of data (3 bytes pressure and 2 bytes temperature). This allows considerable power saving of the system because the host controller does not have to continuously poll for new data from the sensor. The host controller can be notified via the INT pin when it is required to read the data from FIFO buffer. FIFO events can be used to generate interrupt via INT pin.

FIFO can be operated in six different user selectable modes.

- Bypass mode
- FIFO mode
- Continuous mode
- Bypass-to-FIFO mode
- Bypass-to-continuous mode
- Continuous-to-FIFO mode

FIFO behaves as a circular buffer. The buffer is filled with new data set (pressure and temperature) in the first available empty slot. Once the buffer is full, FIFO either stops filling the new data sets or the oldest data set is replaced by the new data sets.

Figure 20: First-In-First-Out buffer
When FIFO is enabled, pressure and temperature data is sent to the FIFO buffer at the selected ODR in the `CTRL_1` register. The host controller can read the data stored in FIFO buffer. The oldest data set is always read first. FIFO modes can be configured from `FIFO_CTRL` register. (0x13).

<table>
<thead>
<tr>
<th>TRIG_MODE</th>
<th>F_MODE[1]</th>
<th>F_MODE[0]</th>
<th>FIFO Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>0</td>
<td>Bypass mode</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>FIFO mode</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>x</td>
<td>Continuous mode</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Bypass-to-FIFO mode</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Bypass-to-Continuous mode</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Continuous-to-FIFO mode</td>
</tr>
</tbody>
</table>

Table 15: FIFO mode settings
9.1 Bypass mode

FIFO buffer is not in operation in the bypass mode. By default the FIFO buffer is in bypass mode and FIFO remains empty. Each new data set is directly available in the respective data (DATA_P_x, DATA_T_x) registers (See Figure 21).

The device can be configured in the bypass mode by writing '000' or '100' to register FIFO_CTRL[2:0].

Enabling bypass mode clears the FIFO buffer and must be used while switching between other FIFO modes.

![Figure 21: Bypass mode](image)
9.2 FIFO mode

This mode is enabled by settings bits [2:0] of FIFO_CTRL (0x13) to ’001’.

In this mode, each data set (pressure and temperature) is stored in the FIFO buffer at selected ODR. The FIFO buffer keeps filling untill it is full or reaches the user-defined FIFO threshold (see section 9.7.1).

FSS[7:0] bits in FIFO_STATUS_1 register (0x25) shows the number of data sets stored in FIFO buffer. This register is updated every 1/ODR period.

Once the FIFO is full, bit FIFO_FULL_IA or FIFO_WTM_IA (if user defined FIFO threshold level is enabled) in the FIFO_STATUS_2 register (0x26) will be set to ’1’, and buffer stops storing new data sets. At this point data in the FIFO buffer will remain unchanged and further measured data sets will be lost. Data stored in FIFO buffer can be read from five FIFO_DATA_x_x registers(0x78-0x7C). See section (see section 9.7.2)

In order to fill the FIFO buffer with new sets of measurement data, the device must be first configured in the bypass mode to reset the FIFO buffer and then again in the FIFO mode.
9.3 Continuous mode

This mode is enabled by setting bits [2:0] of \textit{FIFO_CTRL} (0x13) to ‘010’ or ‘011’.

In this mode, each data set (pressure and temperature) is stored in the FIFO buffer at selected ODR. Once the FIFO buffer is full or reaches the user-defined FIFO threshold, oldest data sets will be overwritten by the new data sets, meaning older data sets will be lost.

FSS[7:0] bits in \textit{FIFO_STATUS_1} register (0x25) indicate the number of data sets stored in FIFO buffer. This register is updated every 1/ODR period.

Once the FIFO is full, bit FIFO_FULL_IA or FIFO_WTM_IA (if user defined FIFO threshold level is enabled) in the \textit{FIFO_STATUS_2} register (0x26) will be set to ‘1’. At this point, older data sets are replaced by new data sets and FIFO_OVR_IA bit in the \textit{FIFO_STATUS_2} register (0x26) goes to ‘1’, indicating that at least one data set has been overwritten.

If FIFO buffer is overwritten without a read operation, bits FIFO_FULL_IA and FIFO_WTM_IA are set back to ‘0’ after the first data set is overwritten.

New data sets will continue to overwrite the old data sets until a read operation is initiated by the host controller or the FIFO is reset. In order to avoid losing the older data sets, data must be read faster than the ODR. Host controller can be alerted about FIFO full or FIFO overwritten event by routing the status of FIFO_FULL_IA, FIFO_WTM_IA or FIFO_OVR_IA to the \textit{INT} pin of the device through corresponding bits of \textit{CTRL_3} register (0x12).
9.4 Bypass-to-FIFO mode

This mode is enabled by settings bits [2:0] of \textit{FIFO_CTRL} (0x13) to ’101’.

In this mode, initially FIFO buffer is in bypass mode. When an interrupt trigger event is generated, FIFO switches from bypass mode to FIFO mode and starts filling the slots with measurement data sets until the buffer is full.

Switching from the bypass mode to the FIFO mode can be triggered by an interrupt event selected by user through \textit{INT_CFG} (0x0B) register. The selected event generation leads IA bit of \textit{INT_SOURCE} (0x24) register to rise to ’1’. When this bit rises to ’1’ for the first time, the buffer switches to FIFO mode.

⚠️ When the IA bit goes back to ’0’, FIFO does not switch back to bypass mode.
9.5 Bypass-to-continuous mode

This mode is enabled by settings bits [2:0] of \textit{FIFO_CTRL} (0x13) to '110'.

In this mode, initially FIFO buffer is in bypass mode. When an interrupt trigger event is generated, FIFO switches from bypass mode to continuous mode and starts filling the slots with measurement data sets; once FIFO is full, it will overwrite old data sets with the new data.

Switching from the bypass mode to the continuous mode can be triggered by an interrupt event selected by the user through \textit{INT_CFG} (0x0B) register. The selected event generation leads IA bit of \textit{INT_SOURCE} (0x24) register to rise to '1'. When this bit rises to '1' for the first time, FIFO switches to continuous mode.

![Diagram of Bypass-to-Continuous mode](image)

Figure 24: Bypass-to-Continuous mode

When the IA bit goes back to '0', FIFO does not switch back to bypass mode.
9.6 Continuous-to-FIFO mode

This mode is enabled by settings bits [2:0] of \textit{FIFO_CTRL} (0x13) to ’111’.

In this mode, initially FIFO buffer is in continuous mode. When an interrupt trigger event is generated, FIFO switches from continuous mode to FIFO mode and continues to fill the slots with the data sets; once FIFO is full, it will stop storing the data in the FIFO buffer.

Switching from continuous to FIFO mode can be triggered by an interrupt event selected by the user through \textit{INT_CFG} (0x0B) register. The selected event generation leads IA bit of \textit{INT_SOURCE} (0x24) register to rise to ’1’. When this bit rises to ’1’ for the first time, the buffer switches to FIFO mode.

When the IA bit goes back to ’0’, FIFO does not switch back to continuous mode.

![Figure 25: Continuous-to-FIFO mode](image-url)
9.7 FIFO status monitoring and control

When FIFO is in operation, its status can be monitored by reading two registers, \textit{FIFO_STATUS_1} (0x25) and \textit{FIFO_STATUS_2} (0x26).

\textit{FIFO_STATUS_1} register shows the current number of data sets stored in the FIFO buffer. 0000000b indicates FIFO is empty and 1000000b indicates FIFO is full with 128 data sets.

\textit{FIFO_STATUS_2} register has 3 FIFO buffer flags.

- \textbf{FIFO_WTM_IA} flag indicates when FIFO buffer is equal to or higher than user defined FIFO threshold level (only if this feature is enabled through \textit{FIFO_CTRL} register). The status of this flag can be routed to \textit{INT} pad of the sensor via \textit{CTRL_3} register by setting INT_F_WTM bit to ‘1’.

- \textbf{FIFO_OVER_IA} flag indicates when FIFO is full and at least one data set is overwritten with a new one. The status of this flag can be routed to \textit{INT} pad of the sensor via \textit{CTRL_3} register by setting INT_F_OVR bit to ‘1’.

- \textbf{FIFO_FULL_IA} flag indicates when FIFO is completely filled with 128 data sets. The status of this flag can be routed to \textit{INT} pad of the sensor via \textit{CTRL_3} register by setting INT_F_FULL bit to ‘1’.
9.7.1 User-defined FIFO threshold

Normally, FIFO can be filled with 128 sets of data. However, user can limit the FIFO buffer depth with $FIFO_WTM$ (0x14) register. The user can define the required FIFO threshold level by setting bits WTM[6:0] of $FIFO_WTM$ registers to the corresponding value. Maximum allowable value in this register is 0x7F.

The user-defined FIFO threshold has to be enabled by setting STOP_ON_WTM bit of $FIFO_CTRL$ (0x13) register to ‘1’. When enabled, the FIFO level size will be considered as the value defined in the $FIFO_WTM$ register.

User-defined FIFO threshold level can not be changed when FIFO is already in operation.

9.7.2 Reading data from FIFO buffer

When FIFO buffer is in operation, the data stored in FIFO is available to read from dedicated FIFO data registers. Pressure values can be read from $FIFO_P_x$ (0x78 to 0x7A) and temperature values can be read from $FIFO_T_x$ (0x7B to 0x7C) registers. Every time a data set is read, remaining oldest entry in the FIFO buffer is placed in the FIFO data registers, available to be read. FIFO status registers $FIFO_STATUS_1$ (0x0x25) and $FIFO_STATUS_2$ (0x0x26) are also updated accordingly.

FIFO data registers (0x78-0x7C) can be read with multi read/write feature which is enabled by default. Number of read operations can be determined based on the number of data sets stored in the FIFO buffer. The current number of data sets stored in the FIFO buffer can be known by reading $FIFO_STATUS_1$ (0x0x25) register.

If differential interrupt is enabled (bit DIFF_EN = ‘1’) with AUTOZERO mode (bit AUTOZERO = ‘1’), then FIFO buffer will contain values other than the standard pressure data registers.
10 Interrupt functionality

The sensor has a dedicated interrupt generator which generates various interrupt events. The interrupt events can be monitored via dedicated status registers. Available interrupt events and their dedicated status registers are listed below.

- Pressure data ready event (STATUS register (0x27))
- Based on pressure threshold (INT_SOURCE register (0x24))
 - Pressure high
 - Pressure low
 - Pressure high or low
- FIFO status (FIFO_STATUS_2 register (0x26))
 - FIFO full
 - FIFO overrun
 - FIFO threshold

10.1 Interrupt generation on pressure data-ready

It is possible to generate a hardware signal through the INT pin of the sensor when a new set of measurement data is available. This feature can be used to trigger an external action synchronously as soon as a new set of data is available.

As mentioned in the section 8.3, P_DA bit in the STATUS register goes to ‘1’, whenever a new set of pressure data is generated. This can be routed to the INT pin of the device by setting bit DRDY = 1 and INT_S[1:0] = 00 of CTRL_3 register (0x12).

P_DA bit and the data-ready signal on INT resets after the most significant byte of pressure data is read.

Data-ready interrupt generation is only available for pressure data.
10.2 Interrupt generation based on pressure threshold

Interrupt can be generated on the differential pressure signal when DIFF_EN bit is set to '1'. When differential pressure is above or below user-defined threshold pressure, an interrupt signal on the INT pin can be generated.

\[\text{Differential pressure} = \text{measured pressure} - \text{REF}_P \]

\[\text{Data}_P_x = \text{measured pressure} - \text{REF}_P \]

To obtain the absolute pressure in kPa from the DATA_P_x registers in the AUTOZERO configuration, the DATA_P_x[digits] has to be divided by a factor of 160 [digits/kPa]

Bit AUTOZERO is set back to '0' after the first conversion but the configuration still remains active. To disable, bit RESET_AZ needs to be set to '1'. RESET_AZ bit is set back to '0' automatically. This resets the REF_P registers to default value '0' and the pressure data registers DATA_P_x show default pressure data.
If AUTOREFP mode is engaged, the pressure data registers DATA_P_x (0x28-0x2A) will contain the measured pressured but the the differential pressure value will still be updated with the difference between the measured pressured and REF_P value.

- Differential pressure = measured pressured - REF_P
- Data_P_x = measured pressure

Bit AUTOREFP is set back to ‘0’ after the first conversion but the configuration still remains active. To disable, bit RESET_ARP needs to be set to ‘1’. RESET_AZ bit is set back to ‘0’ automatically. This resets the REF_P registers to default value ‘0’.

Figure 27: Interrupt generation with AUTOZERO enabled
The sensor has dedicated pressure threshold registers $THR_{P,L}$ and $THR_{P,H}$, where user-defined pressure can be stored as a 15 bit unsigned value. Desired pressure threshold value can be stored in the THR_{P_x} registers as shown below.

$$\text{Pressure threshold [digit]} = \frac{\text{Pressure threshold [kPa]}}{\text{SEN}_p \times \text{kPa/digit}} \times 256 \times \text{kPa/digit}$$

$\text{SEN}_p = 1/40960 \ [\text{kPa/digit}]$

Example:

If the pressure threshold for the interrupt is 10 kPa.

$\text{Pressure threshold} = \frac{10 \ [\text{kPa}]}{\ (256/40960) \ [\text{kPa/digit}]} = 1600 \ [\text{digits}]$

Threshold pressure value is 0x0640

$THR_{P,L} = 0x40$

$THR_{P,H} = 0x06$

User defined pressure threshold is a 15-bit unsigned value which represents a differential pressure and not absolute pressure value.

When, bits $\text{PHE} = '1'$ or $\text{PLE} = '1'$ or both are set to '1', the differential pressure is compared to the user defined pressure value at each new sample generation and an interrupt signal is generated accordingly. Based on the status of the PHE and PLE bits, interrupt signals can be generated on the INT pin of the sensor.

<table>
<thead>
<tr>
<th>PHE</th>
<th>PLE</th>
<th>Interrupt Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Differential pressure is above the THR_{P} value (+THR)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Differential pressure is below the THR_{P} value (-THR)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Differential pressure is above or below the THR_{P} vlaue</td>
</tr>
</tbody>
</table>

Table 16: Interrupt based on pressure threshold

To enable the differential pressure interrupt with AUTOZERO configuration, bits AUTOZERO, DIFF_EN, PLE and/or PHE have to be set to '1'.

To enable the differential pressure interrupt with AUTOZERO configuration, bits AUTOZERO, DIFF_EN, PLE and/or PHE have to be set to '1'.
10.2.1 Interrupt latching

The interrupt generated based on the pressure threshold, can be also latched. Interrupt flags (PH, PL or IA) in the `INT_SOURCE` registers can be latched to their 'high' states, even if the condition that triggered their rise is not valid anymore. The interrupt flags only get reset when `INT_SOURCE` (0x24) register has been read.

Interrupt latching is enabled by setting LIR bit of `INT_CFG` (0x0B) register to '1'. In this case, when the IA bit rises to '1' it will remain in the same state until the `INT_SOURCE` is read.

Interrupt latching is also routed to the `INT` pin of the sensor if IA or PH or PL flags are routed to generate an interrupt.

![Diagram of Interrupt Latching]

Figure 28: Interrupt latching
10.3 FIFO status based interrupt events

When FIFO is active, interrupt event can be generated based on the status of FIFO registers. Status of FIFO registers can be checked from \textit{FIFO_STATUS_2} (0x26) register. By configuring the \textit{CTRL_3} register, it is possible to route the event to the \textit{INT} pin.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit value</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT_F_FULL</td>
<td>1</td>
<td>FIFO is full</td>
</tr>
<tr>
<td>INT_F_WTM</td>
<td>1</td>
<td>User-defined FIFO threshold level is reached</td>
</tr>
<tr>
<td>INT_F_OVR</td>
<td>1</td>
<td>FIFO is full and at least one measurement is overwritten</td>
</tr>
</tbody>
</table>

Table 17: FIFO interrupts

FIFO modes can also be triggered from the interrupt events. When the bit IA in the \textit{INT_SOURCE} register 0x24 is set to ‘1’, following FIFO buffer mode can be triggered.

- Bypass-to-FIFO mode (when \textit{FIFO_CTRL} bits [2:0] are set to ‘101’)
- Bypass-to-Continuous mode (when \textit{FIFO_CTRL} bits [2:0] are set to ‘110’)
- Continuous-to-FIFO mode (when \textit{FIFO_CTRL} bits [2:0] are set to ‘111’)

10.4 Routing interrupt events to the \textit{INT} pin

All the interrupt events can be individually selected and routed to the \textit{INT} pin of the sensor from \textit{CTRL_3} register.

<table>
<thead>
<tr>
<th>Interrupt Event</th>
<th>Routing to \textit{INT} pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure data ready</td>
<td>Bit DRDY = ‘1’ and bits INT_S[1:0] = ’00’</td>
</tr>
<tr>
<td>FIFO full</td>
<td>Bit INT_F_FULL = ’1’ and bits INT_S[1:0] = ’00’</td>
</tr>
<tr>
<td>FIFO Overrun</td>
<td>Bit INT_F_OVR = ’1’ and bits INT_S[1:0] = ’00’</td>
</tr>
<tr>
<td>FIFO threshold</td>
<td>Bit INT_F_WTM = ’1’ and bits INT_S[1:0] = ’00’</td>
</tr>
<tr>
<td>Pressure high or low</td>
<td>Bit PLE or PHE= ’1’ and bits INT_S[1:0] = ’11’</td>
</tr>
<tr>
<td>Pressure high</td>
<td>Bit PLE= ’1’ and bits INT_S[1:0] = ’01’</td>
</tr>
<tr>
<td>Pressure low</td>
<td>Bit PLE= ’1’ and bits INT_S[1:0] = ’10’</td>
</tr>
</tbody>
</table>

Table 18: Routing interrupt events to \textit{INT} pin

It is also possible to route multiple interrupt events to the \textit{INT}. The interrupt events are connected via logical OR operation and multiplexed to the \textit{INT} pin (see figure 29). To know which interrupt event triggered the interrupt signal on \textit{INT} pin, the corresponding status registers have to be read.
Figure 29: Routing interrupt events to INT pin

<table>
<thead>
<tr>
<th>INT_S[1]</th>
<th>INT_S[0]</th>
<th>INT pin configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Data signal (priority order: DRDY or INT_F_WTM or INT_F_OVR or INT_F_FULL)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Pressure high event</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Pressure low event</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Pressure low or high event</td>
</tr>
</tbody>
</table>

Table 19: INT pin configuration
11 Register map

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Register Name</th>
<th>Type</th>
<th>Bits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x08</td>
<td>INT_CFG</td>
<td>R/W</td>
<td>0x0B</td>
<td>Interrupt configuration register</td>
</tr>
<tr>
<td>0x0C</td>
<td>THR_P_L</td>
<td>R/W</td>
<td>THR(7:0)</td>
<td>Pressure threshold register</td>
</tr>
<tr>
<td>0x0D</td>
<td>THR_P_H</td>
<td>R/W</td>
<td>THR(15:8)</td>
<td></td>
</tr>
<tr>
<td>0x0E</td>
<td>INTERFACE_CTRL</td>
<td>R/W</td>
<td>0x00</td>
<td>Interface control register</td>
</tr>
<tr>
<td>0x0F</td>
<td>DEVICE_ID</td>
<td>R</td>
<td>0x11</td>
<td>Device ID register</td>
</tr>
<tr>
<td>0x10</td>
<td>CTRL_1</td>
<td>R/W</td>
<td>CDR[2:0]</td>
<td>Control register-1</td>
</tr>
<tr>
<td>0x11</td>
<td>CTRL_2</td>
<td>R/W</td>
<td>EN, LPFP, LPPF, CFG, BDU</td>
<td>Control register-2</td>
</tr>
<tr>
<td>0x12</td>
<td>CTRL_3</td>
<td>R/W</td>
<td>0x00</td>
<td>Control register-3</td>
</tr>
<tr>
<td>0x13</td>
<td>FIFO_CTRL</td>
<td>R/W</td>
<td>0x00, STOP, TRIG, F_MODE[1:0]</td>
<td>FIFO control register</td>
</tr>
<tr>
<td>0x14</td>
<td>FIFO_WTM</td>
<td>R/W</td>
<td>WTM[6:0]</td>
<td>FIFO threshold level</td>
</tr>
<tr>
<td>0x15</td>
<td>REF_P_L</td>
<td>R</td>
<td>REF[7:0]</td>
<td>Reference pressure register</td>
</tr>
<tr>
<td>0x16</td>
<td>REF_P_H</td>
<td>R</td>
<td>REFH[15:8]</td>
<td>Reference pressure register</td>
</tr>
<tr>
<td>0x18</td>
<td>OPC_P_L</td>
<td>R/W</td>
<td>OPC[7:0]</td>
<td>Reference pressure register</td>
</tr>
<tr>
<td>0x19</td>
<td>OPC_P_H</td>
<td>R/W</td>
<td>OPC[15:8]</td>
<td>Reference pressure register</td>
</tr>
<tr>
<td>0x1A</td>
<td>INT_SOURCE</td>
<td>R</td>
<td>0x00, IA, PL, PH</td>
<td>Interrupt register</td>
</tr>
<tr>
<td>0x25</td>
<td>FIFO_STATUS_1</td>
<td>R</td>
<td>FSS[7:0]</td>
<td>FIFO status registers</td>
</tr>
<tr>
<td>0x26</td>
<td>FIFO_STATUS_2</td>
<td>R</td>
<td>FIFO_P , FIFO_OVR, FIFO_FULL, FIFO_I</td>
<td>FIFO status registers</td>
</tr>
<tr>
<td>0x27</td>
<td>STATUS</td>
<td>R</td>
<td>T_O, T_DA</td>
<td>Status register</td>
</tr>
<tr>
<td>0x28</td>
<td>DATA_P_XL</td>
<td>R</td>
<td>DATA_P[7:0]</td>
<td>Pressure output registers</td>
</tr>
<tr>
<td>0x29</td>
<td>DATA_P_L</td>
<td>R</td>
<td>DATA_P[15:8]</td>
<td>Pressure output registers</td>
</tr>
<tr>
<td>0x2A</td>
<td>DATA_P_H</td>
<td>R</td>
<td>DATA_P[23:16]</td>
<td>Temperature output registers</td>
</tr>
<tr>
<td>0x2B</td>
<td>DATA_T_L</td>
<td>R</td>
<td>DATA_T[7:0]</td>
<td>Temperature output registers</td>
</tr>
<tr>
<td>0x2C</td>
<td>DATA_T_H</td>
<td>R</td>
<td>DATA_T[15:8]</td>
<td>Temperature output registers</td>
</tr>
<tr>
<td>0x2D</td>
<td>Reserved</td>
<td>-</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>0x2E</td>
<td>Reserved</td>
<td>-</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

Writing to reserved registers may cause permanent damage to the device. Register addresses not listed in the above table, must not be accessed and content must not be modified.

Register contents that are loaded during the boot process should not be changed. They contain factory calibration values and their content is automatically restored at the power up.
12 Register description

12.1 INT_CFG (0x0B)

Address: 0x0B
Type: R/W
Default Value: 00000000b

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO REFP</td>
<td>RESET_ ARP</td>
<td>AUTO ZERO</td>
<td>RESET_ AZ</td>
<td>DIFF_EN</td>
<td>LIR</td>
<td>PLE</td>
<td>PHE</td>
</tr>
</tbody>
</table>

AUTOREFP
Enable AUTOREFP function. Measured pressure value is stored in REF_P_x registers (0x15-0x16). Pressure data registers, DATA_P_x show actual measured values.
0: AUTOREFP is disabled 1: AUTOREFP is enabled

RESET_ARP
Reset AUTOREFP function. Resets REF_P_x register values
0: normal mode 1: reset AUTOREFP

AUTOZERO
Enable AUTOZERO mode. Measured pressure value is stored in REF_P_x registers (0x15-0x16) and used as reference for measured data. Pressure data registers DATA_P_x contain the difference between measured pressure and REF_P registers.
0: AUTOZERO is disabled 1: AUTOZERO is enabled

RESET_AZ
Reset AUTOZERO function; Resets REF_P_x register values
0: normal mode 1: reset AUTOZERO

DIFF_EN
Enable differential interrupt generation. To be used with AUTOREFP and AUTOZERO mode.
0: differential interrupt disabled; 1: differential interrupt is enabled

LIR
Interrupt request is latched to the INT_SOURCE register (0x24)
0: interrupt is not latched; 1: interrupt is latched

PLE
Enable differential pressure interrupt generation when pressure value is lower than the user-defined threshold value set in register THR_P_x (0x0c-0x0D)
0: interrupt is inactive; 1: interrupt active on pressure low event
PHE Enable differential pressure interrupt generation when pressure value is higher than the user-defined threshold value set in register THR_P_x (0x0c-0x0D)
0: interrupt is inactive; 1: interrupt active on pressure high event

AUTOZERO or AUTOREFP mode must be enabled when differential pressure interrupt is desired.

AUTOZERO and AUTOREFP bits are set back to '0' after the first measurement and two most significant bytes of the measured value are stored in REF_P_H and REF_P_L registers. In order to return to normal mode, RESET_AZ or RESET_ARP must be set to '1'.

Absolute pressure sensor, Part Nr. 2511020213301
User manual version 1.1 © April 2020
www.we-online.com/sensors
12.2 THR_P_L (0x0C)

Address: 0x0C
Type: R/W
Default Value: 00000000b

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>THR[7:0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THR[7:0] LSB of the user defined pressure threshold value to generate a pressure based interrupt event.

12.3 THR_P_H (0x0D)

Address: 0x0D
Type: R/W
Default Value: 00000000b

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>THR[14:8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THR[15:8] MSB of the user defined pressure threshold value to generate a pressure based interrupt event.

User-defined pressure threshold value is expressed in 15-bit unsigned right-justified value stored in THR_P_H and THR_P_L registers. It can be calculated as follows:

Pressure threshold value (kPa) × 16 = THR_P[15:0]

STOP

THR_P value is a differential pressure threshold and not absolute pressure threshold.

Enable interrupt based on user-defined pressure threshold

1. Set DIFF_EN bit to ‘1’ in INT_CFG register (0x0B)
2. Set PHE or PLE (or both) = ‘1’, based on the user application
12.4 INTERFACE_CTRL (0x0E)

Address: 0x0E
Type: R/W
Default Value: 00000000b

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SDA PU _EN</td>
<td>SAO PU _EN</td>
<td>PD DIS _INT</td>
<td>0</td>
<td>I2C_ DIS-ABLE</td>
</tr>
</tbody>
</table>

- **SDA PU EN**: Enable internal pull-up resistors on the SDA pin
 0: internal pull-up not connected; 1: internal pull-up is connected
- **SAO PU EN**: Enable internal pull-up resistors on the SAO pin
 0: internal pull-up not connected; 1: internal pull-up is connected
- **PD_DIS_INT**: Disable internal pull-down on INT pin
 0: INT pin pull-down connected; 1: INT pin pull-down is disconne-
- **I2C_DISABLE**: Disable I²C digital interface
 0: I²C enabled; 1: I²C disabled

12.5 DEVICE_ID (0x0F)

Address: 0x0F
Type: R
Default Value: 10110011b (0xB3)

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Device ID for this device is a fixed number (0xB3) which is stored in this regis-

Absolute pressure sensor, Part Nr. 2511020213301
User manual version 1.1 © April 2020
www.we-online.com/sensors
12.6 CTRL_1 (0x10)

Address: 0x10
Type: R/W
Default Value: 00000000b

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ODR[2:0]</td>
<td>EN_LPFP</td>
<td>LPFP_CFG</td>
<td>BDU</td>
<td>0</td>
</tr>
</tbody>
</table>

ODR[2:0] Selection of operating mode and ODR as per table 20

<table>
<thead>
<tr>
<th>ODR[2:0]</th>
<th>Output Data Rate [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Power-down mode / single-conversion mode</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>10</td>
</tr>
<tr>
<td>011</td>
<td>25</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>101</td>
<td>75</td>
</tr>
<tr>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>111</td>
<td>200</td>
</tr>
</tbody>
</table>

Table 20: Output data rate selection

EN_LPFP Enable/disable Low-pass filter. For more information refer to section 7.4.2
0: low-pass filter is disabled; 1: low-pass filter is enabled

LPFP_CFG Configure low-pass filter. For more information refer to section 7.4.2

BDU Block data update feature
0: data register updates continuously; 1: data register not updated until MSB and LSB has been read

BDU: Block data update feature

While reading the output data, this feature can be enabled to inhibit the values of data registers to be updated until all bytes of the pressure or temperature data registers have been read.

This feature should be enabled when the reading of the data is slower than the output data rate (ODR). By default, the BDU bit is set to '0' and data registers are updated continuously. When BDU feature is enabled, reading of the pressure or temperature values sampled at different times can be avoided.
For example, when reading of the register \textit{DATA_P_XL} is initialized, the remaining part of the pressure data registers \textit{DATA_P_L} and \textit{DATA_P_H} are not updated until all three bytes (XL, L and H) have been read. In case of temperature data readout, if \textit{DATA_T_L} is read than the value of \textit{DATA_T_H} will not be updated until read.

\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline
BOOT & INT_H_L & PP_OD & IF_ADD_INC & 0 & SW_RESET & LOW_NOISE_EN & ONE_SHOT \\
\hline
\end{tabular}
\end{center}

\textbf{BOOT} Reboots memory content. For details refer to section 6.3
0: normal operation; 1: reboot memory content

\textbf{INT_H_L} Select interrupt: active high or active low
0: active high; 1: active low

\textbf{PP_OD} Push-pull or open-drain selection on the \textit{INT} pin
0: push-pull; 1: open-drain

\textbf{IF_ADD_INC} Register address is automatically incremented during multiple byte access
0: disabled; 1: enabled
This is a multi-read/write feature that enables a repeated read/write operation during a single bus transaction by automatically incrementing the register address. This feature is enabled by default.

\textbf{SWRESET} Perform a software reset. For more information, refer to section 6.4
0: Normal operation; 1: software reset

It is strongly recommended to enable BDU feature. This avoids an update of the \textit{DATA_x_x} registers until all the parts of the corresponding \textit{DATA_x} registers have been read.

\subsection*{12.7 CTRL_2 (0x11)}
Address: 0x11
Type: R/W
Default Value: 00010000b (0x10)
LOW_NOISE_ENABLE

Enable low-noise or low-power configuration. For more information refer to section 7.4.1
0: low-power mode; 1: low-noise mode

ONE_SHOT

Enables single data acquisition of pressure and temperature. For more information refer to section 7.2
0: normal operation; 1: a new data set is acquired

12.8 CTRL_3 (0x12)

Address: 0x12
Type: R/W
Default Value: 00000000b

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>INT_F_FULL</td>
<td>INT_F_WTM</td>
<td>INT_F_OVR</td>
<td>DRDY</td>
<td>INT_S[1:0]</td>
<td></td>
</tr>
</tbody>
</table>

INT_F_FULL

FIFO full status (128 unread samples) is routed to INT pin
0: disabled; 1: FIFO full interrupt enabled

INT_F_WTM

User defined FIFO threshold full status is routed to INT pin
0: disabled; 1: FIFO threshold level interrupt enabled

INT_F_OVR

FIFO overrun status is routed to INT pin
0: disabled; 1: FIFO overrun interrupt enabled

DRDY

Data-ready signal routed to INT pin
0: disabled; 1: enabled

INT_S[1:0]

Interrupt event control on INT pin. Refer to table 21

<table>
<thead>
<tr>
<th>INT_S[1]</th>
<th>INT_S[0]</th>
<th>INT pin configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Data signal (priority order: DRDY or INT_F_WTM or INT_F_OVER or INT_F_FULL)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Pressure high event</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Pressure low event</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Pressure low or high event</td>
</tr>
</tbody>
</table>

Table 21: INT pin configuration
12.9 FIFO_CTRL (0x13)

Address: 0x13
Type: R/W
Default Value: 00000000b

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>STOP_ON_WTM</td>
<td>TRIG_MODES</td>
<td>F_MODE[1:0]</td>
<td></td>
</tr>
</tbody>
</table>

STOP_ON_WTM Enables user defined FIFO threshold level (defined in register FIFO_WTM, 0x14) for FIFO buffer. When number of samples in the FIFO buffer are equal to the set threshold value then FIFO is considered as full.
0: disabled; 1: enabled

TRIG_MODES Enable triggered FIFO mode. Refer Table 22

F_MODE[1:0] Select FIFO mode. Refer Table 22

<table>
<thead>
<tr>
<th>TRIG_MODE</th>
<th>F_MODE[1]</th>
<th>F_MODE[0]</th>
<th>FIFO Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>0</td>
<td>Bypass mode</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>FIFO mode</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>x</td>
<td>Continuous mode</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Bypass-to-FIFO mode</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Bypass-to-Continuous mode</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Continuous-to-FIFO mode</td>
</tr>
</tbody>
</table>

Table 22: Setting FIFO modes
12.10 FIFO_WTM (0x14)

Address: 0x14
Type: R/W
Default Value: 00000000b

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WTM[6:0]</td>
</tr>
</tbody>
</table>

WTM[6:0] User-defined FIFO threshold level.

12.11 REF_P_L (0x15)

Address: 0x15
Type: R
Default Value: 00000000b

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>REFL[7:0]</td>
</tr>
</tbody>
</table>

REFL[7:0] LSB part of the reference pressure value

12.12 REF_P_H (0x16)

Address: 0x16
Type: R
Default Value: 00000000b

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>REFH[15:8]</td>
</tr>
</tbody>
</table>

REFH[15:8] MSB part of the reference pressure value

Reference pressure is stored as 16-bits two’s complement value. When AUTOZERO or AUTOREFP function for differential pressure interrupt is enabled, first instantaneous pressure measurement data is automatically stored in the REF_P_H and REF_P_L registers.

Compensated pressure data is a 24-bit value but REF_P is a 16-bit value. Only 16 most significant bits of the compensated pressure value are stored in the REF_P_H and REF_P_L registers.
12.13 OPC_L (0x18)

Address: 0x18
Type: R/W
Default Value: 00000000b

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC[7:0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPC[7:0] LSB part of the pressure offset value

12.14 OPC_H (0x19)

Address: 0x19
Type: R/W
Default Value: 00000000b

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC[15:8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPC[15:8] MSB part of the pressure offset value

Pressure offset value can be stored in OPC_L and OPC_H register as a 16-bit word expressed as two’s complement.

In case a residual pressure offset is present after soldering, it can be removed by performing one-point calibration with OPC registers. The offset or calibration value can be stored in the OPC_L and OPC_H registers.

Content of OPC registers is automatically subtracted from the standard pressure data registers DATA_P (0x28-0x2A) and FIFO data registers (0x78-0x7A)

\[
\text{DATA}_P \text{ registers} = \text{Measured pressure} - \text{OPC register value} \times 256
\]
12.15 INT_SOURCE (0x24)

Address: 0x24
Type: R
Default Value: Output

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOT_ON</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IA</td>
<td>PL</td>
<td>PH</td>
</tr>
</tbody>
</table>

BOOT_ON
Indicates Boot process status
0: BOOT process over; 1: BOOT process running

IA
Interrupt active
0: no interrupt event has been generated; 1: one or more interrupt event has been generated

PL
Differential pressure low event
0: no interrupt event has been generated; 1: differential pressure low event generated

PH
Differential pressure high event
0: no interrupt event has been generated; 1: differential pressure high event generated

12.16 FIFO_STATUS_1 (0x25)

Address: 0x25
Type: R
Default Value: Output

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSS[7:0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FSS[7:0]
Indicates the FIFO fill level; Number of unread samples stored in FIFO (00000000b: FIFO empty, 10000000b: FIFO full with 128 unread samples)
12.17 FIFO_STATUS_2 (0x26)

Address: 0x26
Type: R
Default Value: Output

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIFO_WTM_IA</td>
<td>FIFO_OVER_IA</td>
<td>FIFO_FULL_IA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

FIFO_WTM_IA User defined FIFO threshold level status
0: FIFO is lower than threshold level; 1: FIFO is equal to or higher than the threshold level

FIFO_OVER_IA FIFO overrun status
0: FIFO is not completely filled; 1: FIFO is full and at least one sample in the FIFO has been overwritten

FIFO_FULL_IA FIFO full status
0: FIFO is not completely filled; 1: FIFO is full and no samples in the FIFO have been overwritten

12.18 STATUS (0x27)

Address: 0x27
Type: R
Default Value: Output

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>T_OR</td>
<td>P_OR</td>
<td>0</td>
<td>0</td>
<td>T_DA</td>
<td>P_DA</td>
</tr>
</tbody>
</table>

T_OR Temperature data overrun
0: no overrun has occurred; 1: a new temperature sample has been overwritten

P_OR Pressure data overrun
0: no overrun has occurred; 1: a new pressure sample has been overwritten
T_DA Temperature data available
0: no new temperature sample is available; 1: a new temperature sample has been generated

P_DA Pressure data available
0: no new pressure sample is available; 1: a new pressure sample has been generated

12.19 DATA_P_XL (0x28)

Address: 0x28
Type: R
Default Value: Output

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DATA_P[7:0]</td>
</tr>
</tbody>
</table>

DATA_P[7:0] Low part of the pressure data.
Combine this value with DATA_P_L and DATA_P_H register values to form a 24-bit number expressed in a two's complement, that gives the pressure value.

12.20 DATA_P_L (0x29)

Address: 0x29
Type: R
Default Value: Output

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DATA_P[15:8]</td>
</tr>
</tbody>
</table>

DATA_P[15:8] Middle part of the pressure data.
Combine this value with DATA_P_XL and DATA_P_H register values to form a 24-bit number expressed in a two's complement, that gives the pressure value.
12.21 DATA_P_H (0x2A)

Address: 0x2A
Type: R
Default Value: Output

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DATA_P[23:16]</td>
</tr>
</tbody>
</table>

DATA_P[23:16] High part of the pressure data.
Combine this value with DATA_P_XL and DATA_P_L register values to form a 24-bit number expressed in a two's complement, that gives the pressure value.

12.22 DATA_T_L (0x2B)

Address: 0x2B
Type: R
Default Value: Output

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DATA_T[7:0]</td>
</tr>
</tbody>
</table>

DATA_T[7:0] Low part of the temperature data.
Combine this value with DATA_T_H register value to form a 16-bit number expressed in a two's complement, that gives the temperature value.

12.23 DATA_T_H (0x2C)

Address: 0x2C
Type: R
Default Value: Output

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DATA_T[15:8]</td>
</tr>
</tbody>
</table>

DATA_T[15:8] High part of the temperature data.
Combine this value with DATA_T_L register value to form a 16-bit number expressed in a two's complement, that gives the temperature value.
12.24 FIFO_DATA_P_XL (0x78)

- **Address:** 0x78
- **Type:** R
- **Default Value:** Output

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIFO_P[7:0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIFO_P[7:0] Low part of the FIFO buffer pressure data. Combine this value with DATA_P_L and DATA_P_H register values to form a 24-bit number expressed in a two's complement, that gives the pressure value.

12.25 FIFO_DATA_P_L (0x79)

- **Address:** 0x79
- **Type:** R
- **Default Value:** Output

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIFO_P[15:8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIFO_P[15:8] Middle part of the FIFO buffer pressure data. Combine this value with DATA_P_XL and DATA_P_H register values to form a 24-bit number expressed in a two's complement, that gives the pressure value.

12.26 FIFO_DATA_P_H (0x7A)

- **Address:** 0x7A
- **Type:** R
- **Default Value:** Output

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIFO_P[23:16]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIFO_P[23:16] High part of the FIFO buffer pressure data. Combine this value with DATA_P_XL and DATA_P_L register values to form a 24-bit number expressed in a two's complement, that gives the pressure value.
12.27 FIFO_DATA_T_L (0x7B)

Address: 0x7B
Type: R
Default Value: Output

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIFO_T[7:0] Low part of the FIFO buffer temperature data
Combine this value with DATA_T_H register value to form a 16-bit number expressed in a two's complement, that gives the temperature value.

12.28 FIFO_DATA_T_H (0x7C)

Address: 0x7C
Type: R
Default Value: Output

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIFO_T[15:8] High part of the FIFO buffer temperature data.
Combine this value with DATA_T_L register value to form a 16-bit number expressed in a two's complement, that gives the temperature value.
13 Physical dimensions

13.1 Sensor drawing

Figure 30: Sensor dimensions [mm]
13.2 Footprint

Figure 31: Recommended land pattern [mm] (top view)
14 Manufacturing information

14.1 Moisture sensitivity level

The sensor product is categorized as JEDEC Moisture Sensitivity Level 3 (MSL3), which requires special handling.

More information regarding the MSL requirements can be found in the IPC/JEDEC J-STD-020 standard on www.jedec.org. More information about the handling, picking, shipping and the usage of moisture/re-flow and/or process sensitive products can be found in the IPC/JEDEC J-STD-033 standard on www.jedec.org.

14.2 Soldering

14.2.1 Reflow soldering

Attention must be paid on the thickness of the solder resist between the host PCB top side and the modules bottom side. Only lead-free assembly is recommended according to JEDEC J-STD020.

<table>
<thead>
<tr>
<th>Profile feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preheat temperature Min T_s Min</td>
<td>150 °C</td>
</tr>
<tr>
<td>Preheat temperature Max T_s Max</td>
<td>200 °C</td>
</tr>
<tr>
<td>Preheat time from T_s Min to T_s Max</td>
<td>t_s 60 - 120 seconds</td>
</tr>
<tr>
<td>Ramp-up rate (T_L to T_P)</td>
<td>3 °C / second max.</td>
</tr>
<tr>
<td>Liquidous temperature T_L</td>
<td>217 °C</td>
</tr>
<tr>
<td>Time t_L maintained above T_L</td>
<td>t_L 60 - 150 seconds</td>
</tr>
<tr>
<td>Peak package body temperature T_P</td>
<td>see table below</td>
</tr>
<tr>
<td>Time within 5 °C of actual peak temper</td>
<td>t_P 20 - 30 seconds</td>
</tr>
<tr>
<td>Ramp-down Rate (T_P to T_L)*</td>
<td>6 °C / second max.</td>
</tr>
<tr>
<td>Time 20 °C to T_P</td>
<td>8 minutes max.</td>
</tr>
</tbody>
</table>

Table 23: Classification reflow soldering profile, Note: refer to IPC/JEDEC J-STD-020E

* In order to reduce residual stress on the sensor component, the recommended ramp-down temperature slope should be lower than 3 °C /s.
Table 24: Package classification reflow temperature, PB-free assembly, Note: refer to IPC-/JEDEC J-STD-020E

<table>
<thead>
<tr>
<th>Package thickness</th>
<th>Volume mm3</th>
<th>Volume mm3</th>
<th>Volume mm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.6mm</td>
<td>260 °C</td>
<td>260 °C</td>
<td>260 °C</td>
</tr>
<tr>
<td>1.6mm - 2.5mm</td>
<td>260 °C</td>
<td>250 °C</td>
<td>245 °C</td>
</tr>
<tr>
<td>> 2.5mm</td>
<td>250 °C</td>
<td>245 °C</td>
<td>245 °C</td>
</tr>
</tbody>
</table>

It is recommended to solder the sensor on the last re-flow cycle of the PCB. For solder paste use a LFM-48W or Indium based SAC 305 alloy (Sn 96.5 / Ag 3.0 / Cu 0.5 / Indium 8.9HF / Type 3 / 89%) type 3 or higher.

The reflow profile must be adjusted based on the thermal mass of the entire populated PCB, heat transfer efficiency of the re-flow oven and the specific type of solder paste used. Based on the specific process and PCB layout the optimal soldering profile must be adjusted and verified. Other soldering methods (e.g. vapor phase) have not been verified and have to be validated by the customer at their own risk. Rework is not recommended.

![Figure 32: Reflow soldering profile](image)

After reflow soldering, visually inspect the board to confirm proper alignment.
14.2.2 Cleaning and washing

Do not clean the product. Any residue cannot be easily removed by washing. Use a "no clean" soldering paste and do not clean the board after soldering.

• Washing agents used during the production to clean the customer application might damage or change the characteristics of the component. Washing agents may have a negative effect on the long-term functionality of the product.

• Using a brush during the cleaning process may damage the component. Therefore, we do not recommend using a brush during the PCB cleaning process.

14.2.3 Potting and coating

• Potting material might shrink or expand during and after hardening. This might apply mechanical stress on the components, which can influence the characteristics of the transfer function. In addition, potting material can close existing openings in the housing. This can lead to a malfunction of the component. Thus, potting is not recommended.

• Conformal coating may affect the product performance. We do not recommend coating the components.

14.2.4 Storage conditions

• A storage of Würth Elektronik eiSos products for longer than 12 months is not recommended. Within other effects, the terminals may suffer degradation, resulting in bad solderability. Therefore, all products shall be used within the period of 12 months based on the day of shipment.

• Do not expose the components to direct sunlight.

• The storage conditions in the original packaging are defined according to DIN EN 61760 - 2.

• For a moisture sensitive component, the storage condition in the original packaging is defined according to IPC/JEDEC-J-STD-033. It is also recommended to return the component to the original moisture proof bag and reseal the moisture proof bag again.

14.2.5 Handling

• Violation of the technical product specifications such as exceeding the nominal rated supply voltage, will void the warranty.

• Violation of the technical product specifications such as but not limited to exceeding the absolute maximum ratings will void the conformance to regulatory requirements.

• ESD prevention methods need to be followed for manual handling and processing by machinery.

• The edge castellation is designed and made for prototyping, i.e. hand soldering purposes only.
• The applicable country regulations and specific environmental regulations must be observed.

• Do not disassemble the product. Evidence of tampering will void the warranty.
15 Important notes

The following conditions apply to all goods within the sensors product range of Würth Elektronik eiSos GmbH & Co. KG:

15.1 General customer responsibility

Some goods within the product range of Würth Elektronik eiSos GmbH & Co. KG contain statements regarding general suitability for certain application areas. These statements about suitability are based on our knowledge and experience of typical requirements concerning the areas, serve as general guidance and cannot be estimated as binding statements about the suitability for a customer application. The responsibility for the applicability and use in a particular customer design is always solely within the authority of the customer. Due to this fact, it is up to the customer to evaluate, where appropriate to investigate and to decide whether the device with the specific product characteristics described in the product specification is valid and suitable for the respective customer application or not. Accordingly, the customer is cautioned to verify that the documentation is current before placing orders.

15.2 Customer responsibility related to specific, in particular safety-relevant applications

It has to be clearly pointed out that the possibility of a malfunction of electronic components or failure before the end of the usual lifetime cannot be completely eliminated in the current state of the art, even if the products are operated within the range of the specifications. The same statement is valid for all software and software parts contained in or used with or for products in the sensor product range of Würth Elektronik eiSos GmbH & Co. KG. In certain customer applications requiring a high level of safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health, it must be ensured by most advanced technological aid of suitable design of the customer application that no injury or damage is caused to third parties in the event of malfunction or failure of an electronic component.

15.3 Best care and attention

Any product-specific data sheets, manuals, application notes, PCN’s, warnings and cautions must be strictly observed in the most recent versions and matching to the products revisions. This documents can be downloaded from the product specific sections on the wireless connectivity and sensors homepage.

15.4 Customer support for product specifications

Some products within the product range may contain substances, which are subject to restrictions in certain jurisdictions in order to serve specific technical requirements. Necessary information is available on request. In this case, the field sales engineer or the internal sales person in charge should be contacted who will be happy to support in this matter.
15.5 Product improvements

Due to constant product improvement, product specifications may change from time to time. As a standard reporting procedure of the Product Change Notification (PCN) according to the JEDEC-Standard, we inform about major changes. In case of further queries regarding the PCN, the field sales engineer, the internal sales person or the technical support team in charge should be contacted. The basic responsibility of the customer as per section 15.1 and 15.2 remains unaffected. The sensor driver software “Sensor SDK” and its source codes are not subject to the Product Change Notification information process.

15.6 Product life cycle

Due to technical progress and economical evaluation we also reserve the right to discontinue production and delivery of products. As a standard reporting procedure of the Product Termination Notification (PTN) according to the JEDEC-Standard we will inform at an early stage about inevitable product discontinuance. According to this, we cannot ensure that all products within our product range will always be available. Therefore, it needs to be verified with the field sales engineer or the internal sales person in charge about the current product availability expectancy before or when the product for application design-in disposal is considered. The approach named above does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

15.7 Property rights

All the rights for contractual products produced by Würth Elektronik eiSos GmbH & Co. KG on the basis of ideas, development contracts as well as models or templates that are subject to copyright, patent or commercial protection supplied to the customer will remain with Würth Elektronik eiSos GmbH & Co. KG. Würth Elektronik eiSos GmbH & Co. KG does not warrant or represent that any license, either expressed or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, application, or process in which Würth Elektronik eiSos GmbH & Co. KG components or services are used.

15.8 General terms and conditions

Unless otherwise agreed in individual contracts, all orders are subject to the current version of the “General Terms and Conditions of Würth Elektronik eiSos Group”, last version available at www.we-online.com.
16 Legal notice

16.1 Exclusion of liability

Würth Elektronik eiSos GmbH & Co. KG considers the information in this document to be correct at the time of publication. However, Würth Elektronik eiSos GmbH & Co. KG reserves the right to modify the information such as technical specifications or functions of its products or discontinue the production of these products or the support of one of these products without any written announcement or notification to customers. The customer must make sure that the information used corresponds to the latest published information. Würth Elektronik eiSos GmbH & Co. KG does not assume any liability for the use of its products. Würth Elektronik eiSos GmbH & Co. KG does not grant licenses for its patent rights or for any other of its intellectual property rights or third-party rights.

Notwithstanding anything above, Würth Elektronik eiSos GmbH & Co. KG makes no representations and/or warranties of any kind for the provided information related to their accuracy, correctness, completeness, usage of the products and/or usability for customer applications. Information published by Würth Elektronik eiSos GmbH & Co. KG regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof.

16.2 Suitability in customer applications

The customer bears the responsibility for compliance of systems or units, in which Würth Elektronik eiSos GmbH & Co. KG products are integrated, with applicable legal regulations. Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Würth Elektronik eiSos GmbH & Co. KG components in its applications, notwithstanding any applications-related in-formation or support that may be provided by Würth Elektronik eiSos GmbH & Co. KG. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences lessen the likelihood of failures that might cause harm and take appropriate remedial actions. The customer will fully indemnify Würth Elektronik eiSos GmbH & Co. KG and its representatives against any damages arising out of the use of any Würth Elektronik eiSos GmbH & Co. KG components in safety-critical applications.

16.3 Usage restriction

Würth Elektronik eiSos GmbH & Co. KG products have been designed and developed for usage in general electronic equipment only. This product is not authorized for use in equipment where a higher safety standard and reliability standard is especially required or where a failure of the product is reasonably expected to cause severe personal injury or death, unless the parties have executed an agreement specifically governing such use. Moreover, Würth Elektronik eiSos GmbH & Co. KG products are neither designed nor intended for use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network etc. Würth Elektronik eiSos GmbH & Co. KG must be
informed about the intent of such usage before the design-in stage. In addition, sufficient reliability evaluation checks for safety must be performed on every electronic component, which is used in electrical circuits that require high safety and reliability function or performance. By using Würth Elektronik eiSos GmbH & Co. KG products, the customer agrees to these terms and conditions.
17 License terms for Würth Elektronik eiSos GmbH & Co. KG sensor product software and source code

This License terms will take effect upon the purchase and usage of the Würth Elektronik eiSos GmbH & Co. KG sensor products. You hereby agree that this license terms are applicable to the product and the incorporated software, firmware and source codes (collectively, "Software") made available by Würth Elektronik eiSos in any form, including but not limited to binary, executable or source code form. The software included in any Würth Elektronik eiSos sensor product is purchased to you on the condition that you accept the terms and conditions of this license terms. You agree to comply with all provisions under this license terms.

17.1 Limited license

Würth Elektronik eiSos hereby grants you a limited, non-exclusive, non-transferable and royalty-free license to use the software and under the conditions that will be set forth in this license terms. You are free to use the provided software only in connection with one of the products from Würth Elektronik eiSos to the extent described in this license terms. You are entitled to change or alter the source code for the sole purpose of creating an application embedding the Würth Elektronik eiSos sensor product. The transfer of the source code to third parties is allowed to the sole extent that the source code is used by such third parties in connection with our product or another hardware provided by Würth Elektronik eiSos under strict adherence of this license terms. Würth Elektronik eiSos will not assume any liability for the usage of the incorporated software and the source code. You are not entitled to transfer the source code in any form to third parties without prior written consent of Würth Elektronik eiSos. You are not allowed to reproduce, translate, reverse engineer, decompile, disassemble or create derivative works of the incorporated software and the source code in whole or in part. No more extensive rights to use and exploit the products are granted to you.

17.2 Usage and obligations

The responsibility for the applicability and use of the Würth Elektronik eiSos sensor product with the incorporated software in a particular customer design is always solely within the authority of the customer. Due to this fact, it is up to you to evaluate and investigate, where appropriate, and to decide whether the device with the specific product characteristics described in the product specification is valid and suitable for your respective application or not. You are responsible for using the Würth Elektronik eiSos sensor product with the incorporated software in compliance with all applicable product liability and product safety laws. You acknowledge to minimize the risk of loss and harm to individuals and bear the risk for failure leading to personal injury or death due to your usage of the product. Würth Elektronik eiSos’ products are not authorized for use in safety-critical applications, or where a failure of the product is reasonably expected to cause severe personal injury or death. Moreover, Würth Elektronik eiSos’ products are neither designed nor intended for

Absolute pressure sensor, Part Nr. 2511020213301
User manual version 1.1 © April 2020
www.we-online.com/sensors
use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network etc. You shall inform Würth Elektronik eiSos about the intent of such usage before design-in stage. In certain customer applications requiring a very high level of safety and in which the malfunction or failure of an electronic component could endanger human life or health, you must ensure to have all necessary expertise in the safety and regulatory ramifications of your applications. You acknowledge and agree that you are solely responsible for all legal, regulatory and safety-related requirements concerning your products and any use of Würth Elektronik eiSos’ products in such safety-critical application-s, notwithstanding any applications-related information or support that may be provided by Würth Elektronik eiSos. YOU SHALL INDEMNIFY WÜRTH ELEKTRONIK EISOS AGAINST ANY DAMAGES ARISING OUT OF THE USE OF WÜRTH ELEKTRONIK EISOS’ PRODUCTS IN SUCH SAFETY-CRITICAL APPLICATIONS.

17.3 Ownership

The incorporated Software created by Würth Elektronik eiSos is and will remain the exclusive property of Würth Elektronik eiSos.

17.4 Disclaimer of warranty

THE SOFTWARE AND IT’S SOURCE CODE IS PROVIDED "AS IS". YOU ACKNOWLEDGE THAT WÜRTH ELEKTRONIK EISOS MAKES NO REPRESENTATIONS AND WARRANTIES OF ANY KIND RELATED TO, BUT NOT LIMITED TO THE NON-INFRINGEMENT OF THIRD PARTIES’ INTELLECTUAL PROPERTY RIGHTS OR THE MERCHANTABILITY OR FITNESS FOR YOUR INTENDED PURPOSE OR USAGE. WÜRTH ELEKTRONIK EISOS DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR PROCESS IN WHICH THE WÜRTH ELEKTRONIK EISOS’ PRODUCT WITH THE INCORPORATED SOFTWARE IS USED. INFORMATION PUBLISHED BY WÜRTH ELEKTRONIK EISOS REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE A LICENSE FROM WÜRTH ELEKTRONIK EISOS TO USE SUCH PRODUCTS OR SERVICES OR A WARRANTY OR ENDORSEMENT THEREOF.

17.5 Limitation of liability

Any liability not expressly provided by Würth Elektronik eiSos shall be disclaimed. You agree to hold us harmless from any third-party claims related to your usage of the Würth Elektronik eiSos’ products with the incorporated software and source code. Würth Elektronik eiSos disclaims any liability for any alteration, development created by you or your customers as well as for any combination with other products.

17.6 Applicable law and jurisdiction

Applicable law to this license terms shall be the laws of the Federal Republic of Germany. Any dispute, claim or controversy arising out of or relating to this license terms shall be
resolved and finally settled by the court competent for the location of Würth Elektronik eiSos registered office.

17.7 Severability clause

If a provision of this license terms are or becomes invalid, unenforceable or null and void, this shall not affect the remaining provisions of the terms. The parties shall replace any such provisions with new valid provisions that most closely approximate the purpose of the terms.

17.8 Miscellaneous

Würth Elektronik eiSos reserves the right at any time to change this terms at its own discretion. It is your responsibility to check at Würth Elektronik eiSos homepage for any updates. Your continued usage of the products will be deemed as the acceptance of the change.

We recommend you to be updated about the status of new software, which is available on our website or in our data sheet, and to implement new software in your device where appropriate.

By ordering a sensor product, you accept this license terms in all terms.
List of Figures

1 Block diagram .. 8
2 Filtering chain and data path 9
3 Pin specifications (top view) 13
4 Master-slave concept ... 14
5 SDA and SCL logic levels 15
6 Data validity, START and STOP condition 16
7 Slave address format ... 17
8 Complete data transfer 18
9 Write and read operations with the device 19
10 Application circuit with I\textsubscript{2}C interface (top view) 21
11 Power-up sequence ... 23
12 Communication check with host controller 24
13 Reboot and software reset sequence 25
14 Sensor operation: single-conversion mode 26
15 Sensor operation: continuous mode 27
16 Operating modes .. 29
17 Single conversion mode 31
18 Continuous mode ... 32
19 Reading pressure data using \textit{STATUS} register 37
20 First-In-First-Out buffer 38
21 Bypass mode .. 40
22 FIFO mode ... 41
23 Continuous mode .. 42
24 Bypass-to-Continuous mode 44
25 Continuous-to-FIFO mode 45
26 Differential pressure interrupt 49
27 Interrupt generation with AUTOZERO enabled 50
28 Interrupt latching .. 52
29 Routing interrupt events to \textit{INT} pin 54
30 Sensor dimensions [mm] .. 72
31 Recommended land pattern [mm] (top view) 73
32 Reflow soldering profile 75

List of Tables

1 Ordering information .. 7
2 General information ... 10
3 Absolute maximum ratings 10
4 Pressure sensor specifications 11
5 Temperature sensor specifications 11
6 Electrical specifications 12
7 Pin description .. 13
8 Slave address and Read/Write commands 17
9 I\textsubscript{2}C timing parameters 20
10 Data conversion time ... 31
11 Output data rate selection 32

Absolute pressure sensor, Part Nr. 2511020213301
User manual version 1.1 © April 2020
www.we-online.com/sensors
more than you expect

Internet of Things

Monitoring & Control

Automated Meter Reading

Contact:
Würth Elektronik eiSos GmbH & Co. KG
Division Wireless Connectivity & Sensors
Max-Eyth-Straße 1
74638 Waldenburg
Germany
Tel.: +49 651 99355-0
Fax.: +49 651 99355-69
www.we-online.com/wireless-connectivity